skip to main content
Show Results with:

Visualizing ubiquitination in mammalian cells

van Wijk, Sjoerd JL et al.

EMBO reports. Volume 20:Number 2 (2019, February); pp n/a-n/a -- WILEY-VCH Verlag GmbH & Co. KGaA

Online access

  • Title:
    Visualizing ubiquitination in mammalian cells
  • Author: van Wijk, Sjoerd JL;
    Fulda, Simone;
    Dikic, Ivan;
    Heilemann, Mike
  • Found In: EMBO reports. Volume 20:Number 2 (2019, February); pp n/a-n/a
  • Journal Title: EMBO reports
  • Subjects: Molecular Biology--Periodicals; Molecular biology--Periodicals; Molecular biology; Periodicals; ubiquitination--LUBAC--OTULIN--Salmonella--super‐resolution microscopy; Dewey: 572.8
  • Rights: Licensed
  • Publication Details: WILEY-VCH Verlag GmbH & Co. KGaA
  • Abstract: Abstract:

    Covalent modification of proteins with ubiquitin is essential for the majority of biological processes in mammalian cells. Numerous proteins are conjugated with single or multiple ubiquitin molecules or chains in a dynamic fashion, often determining protein half‐lives, localization or function. Experimental approaches to study ubiquitination have been dominated by genetic and biochemical analysis of enzyme structure–function relationships, reaction mechanisms and physiological relevance. Here, we provide an overview of recent developments in microscopy‐based imaging of ubiquitination, available reagents and technologies. We discuss the progress in direct and indirect imaging of differentially linked ubiquitin chains in fixed and living cells using confocal fluorescence microscopy and super‐resolution microscopy, illustrated by the role of ubiquitin in antibacterial autophagy and pro‐inflammatory signalling. Finally, we speculate on future developments and forecast a transition from qualitative to quantitative super‐resolution approaches to understand fundamental aspects of ubiquitination and the formation and distribution of functional E3 ligase protein complexes in their native environment.

    The covalent modification of proteins with ubiquitin serves numerous degradative and regulatory functions. This review discusses how advanced fluorescent and super‐resolution microscopy techniques can be applied to study ubiquitination to expand the current biochemical and genetic toolkits.


  • Identifier: System Number: ETOCvdc_100089396547.0x000001; Journal ISSN: 1469-221X; 10.15252/embr.201846520
  • Publication Date: 2019
  • Physical Description: Electronic
  • Shelfmark(s): 3733.086000
  • UIN: ETOCvdc_100089396547.0x000001

Searching Remote Databases, Please Wait