skip to main content
Show Results with:

Human placenta hydrogel reduces scarring in a rat model of cardiac ischemia and enhances cardiomyocyte and stem cell cultures

Francis, Michael P. et al.

Acta biomaterialia -- Elsevier -- Volume: 52 C; (pages 92-104) -- 2017

Online access

  • Title:
    Human placenta hydrogel reduces scarring in a rat model of cardiac ischemia and enhances cardiomyocyte and stem cell cultures
  • Author: Francis, Michael P.;
    Breathwaite, Erick;
    Bulysheva, Anna A.;
    Varghese, Frency;
    Rodriguez, Rudy U.;
    Dutta, Sucharita;
    Semenov, Iurii;
    Ogle, Rebecca;
    Huber, Alexander;
    Tichy, Alexandra-Madelaine;
    Chen, Silvia;
    Zemlin, Christian
  • Found In: Acta biomaterialia. Volume 52:Number C(2017); 20170401; 92-104
  • Journal Title: Acta biomaterialia
  • Subjects: Biomedical materials; LCSH: Biomedical materials; Dewey: 610.28
  • Rights: Licensed
  • Publication Details: Elsevier
  • Abstract: Graphical abstractAbstractIntroductionXenogeneic extracellular matrix (ECM) hydrogels have shown promise in remediating cardiac ischemia damage in animal models, yet analogous human ECM hydrogels have not been well development. An original human placenta-derived hydrogel (hpECM) preparation was thus generated for assessment in cardiomyocyte cell culture and therapeutic cardiac injection applications.Methods and resultsHybrid orbitrap-quadrupole mass spectrometry and ELISAs showed hpECM to be rich in collagens, basement membrane proteins, and regenerative growth factors (e.g. VEGF-B, HGF). Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes synchronized and electrically coupled on hpECM faster than on conventional cell culture environments, as validated by intracellular calcium measurements.In vivo, injections using biotin-labeled hpECM confirmed its spatially discrete localization to the myocardium proximal to the injection site. hpECM was injected into rat myocardium following an acute myocardium infarction induced by left anterior descending artery ligation. Compared to sham treated animals, which exhibited aberrant electrical activity and larger myocardial scars, hpECM injected rat hearts showed a significant reduction in scar volume along with normal electrical activity of the surviving tissue, as determined by optical mapping.ConclusionPlacental matrix and growth factors can be extracted as a hydrogel that effectively supports cardiomyocytesin vitro, andin vivoreduces scar formation while maintaining electrophysiological activity when injected into ischemic myocardium.Statement of SignificanceThis is the first report of an original extracellular matrix hydrogel preparation isolated from human placentas (hpECM). hpECM is rich in collagens, laminin, fibronectin, glycoproteins, and growth factors, including known pro-regenerative, pro-angiogenic, anti-scarring, anti-inflammatory, and stem cell-recruiting factors. hpECM supports the culture of cardiomyocytes, stem cells and blood vessels assembly from endothelial cells. In a rat model of myocardial infarction, hpECM injections were safely deliverable to the ischemic myocardium. hpECM injections repaired the myocardium, resulting in a significant reduction in infarct size, more viable myocardium, and a normal electrophysiological contraction profile. hpECM thus has potential in therapeutic cardiovascular applications, in cellular therapies (as a delivery vehicle), and is a promising biomaterial for advancing basic cell-based research and regenerative medicine applications.
  • Identifier: Journal ISSN: 1742-7061
  • Publication Date: 2017
  • Physical Description: Electronic
  • Shelfmark(s): ELD Digital store
    0602.900500
  • UIN: ETOCvdc_100043109415.0x000001

Searching Remote Databases, Please Wait