skip to main content
Show Results with:

Nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide

Wang, Zhong-Li; Li, Cuiling; Yamauchi, Yusuke

Nano today -- Elsevier Ltd. -- Volume: 11 3; (pages 373-391) -- 2016

Online access

  • Title:
    Nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide
  • Author: Wang, Zhong-Li;
    Li, Cuiling;
    Yamauchi, Yusuke
  • Found In: Nano today. Volume 11:Number 3(2016); 201606; 373-391
  • Journal Title: Nano today
  • Subjects: Nanotechnology; Nanosciences; LCSH: Nanotechnology; Dewey: 620.505
  • Rights: Licensed
  • Publication Details: Elsevier Ltd.
  • Abstract: Graphical abstractHighlightsRecent progress in nanostructured nonprecious metal catalysts for electrochemical CO2reduction is reviewed.The effects of particle size, grain boundary, crystal facet, and metal valence are discussed in metal-based catalysts.In carbon and organic framework-based catalysts, the effects of heteroatom doping and molecular hybrid are discussed.Future directions are proposed, emphasizing hierarchical porous non-metal or little-metal catalysts.AbstractElectrochemical reduction of carbon dioxide powered by renewable electricity represents a promising solution for energy and environmental sustainability. To enable this technology, active and selective catalysts must be developed. Noble metals exhibit excellent activity but are hampered by their low abundance and high cost. Thus, searching for efficient nonprecious metal catalysts for practical applications is vital. In this review, the recent progress on nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide is summarized. These catalysts are classified into five categories: metals, partially oxidized metals, metal oxides and sulfides, doped carbons, and organic frameworks. The areas of focus are material synthesis, structure and components, catalytic performance, and reaction mechanisms. Several important factors that affect activity, such as particle size, interface strain, grain boundary, crystal facet, oxidation state, heteroatom configuration, and organic hybrid, are discussed. Finally, some perspectives are provided for future developments and directions of the synthesis and functionalization of nonprecious metal catalysts, with emphasis on the potential advantages of nanoporous materials for carbon dioxide reduction.
  • Identifier: Journal ISSN: 1748-0132
  • Publication Date: 2016
  • Physical Description: Electronic
  • Shelfmark(s): ELD Digital store
    6015.335517
  • UIN: ETOCvdc_100038913383.0x000001

Searching Remote Databases, Please Wait